Graph Neural Network

Hyelin Choi

Department of Mathematics Sungkyunkwan University

February 22, 2024

Table of Contents

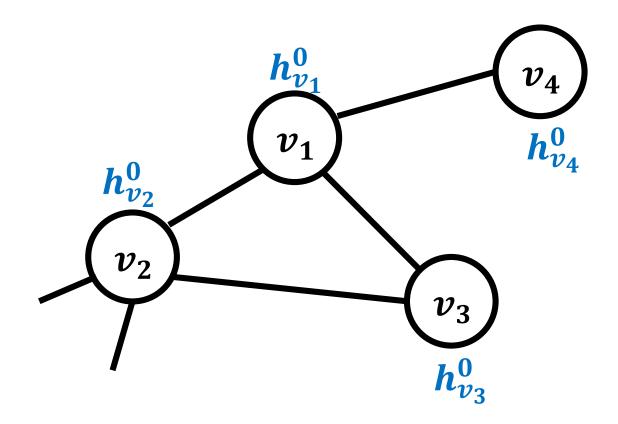
- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

Table of Contents

- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

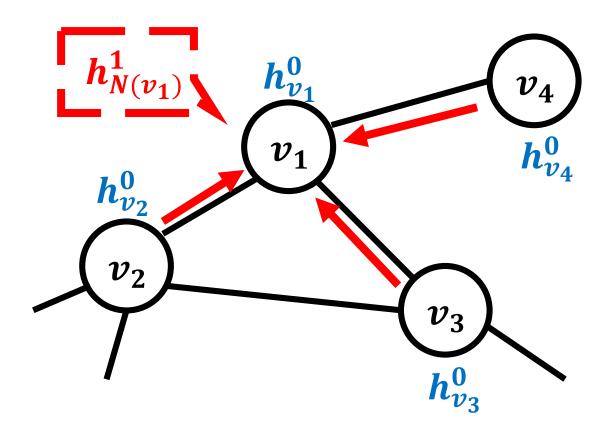
Step 1

The node embeddings are initialized with node features.



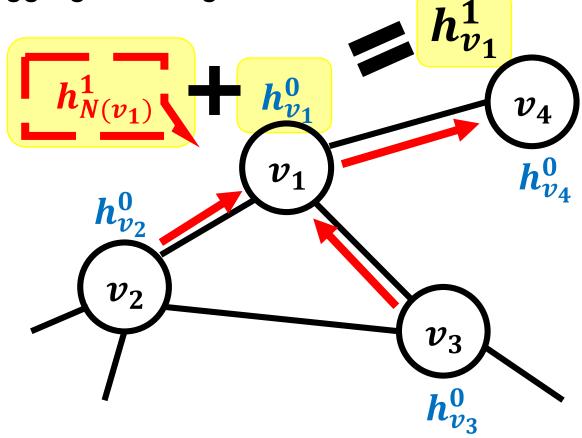
Step 2

Nodes aggregate the embeddings of their neighbors, using an aggregation function.



Step 3

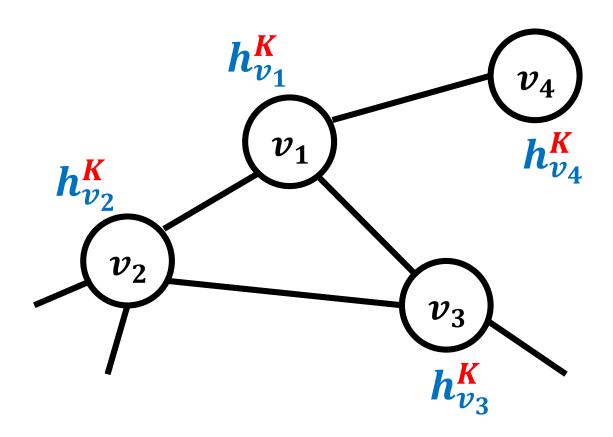
Combine its previous embedding from the last iteration with its aggregated neighborhood vector.



K iteration!

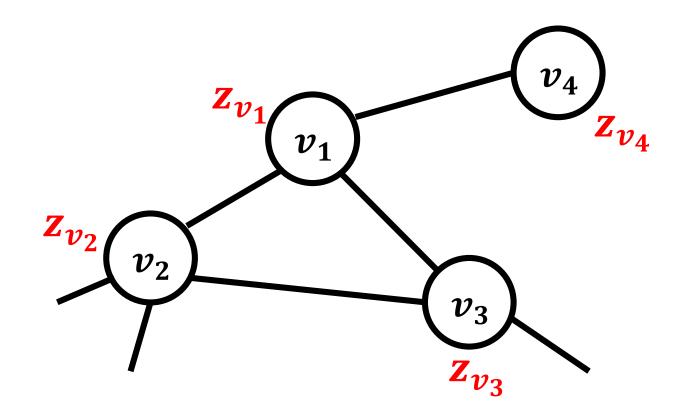
Step 3

Combine its previous embedding from the last iteration with its aggregated neighborhood vector.



Step 4

We finally get the vector representation for each node.



```
Algorithm 1: Neighborhood-aggregation encoder algorithm. Adapted from [28].
      Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices \{\mathbf{W}^k, \forall k \in [1, K]\};
                       non-linearity \sigma; differentiable aggregator functions {AGGREGATE<sub>k</sub>, \forall k \in [1, K]};
                       neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
      Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
  \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V};
                                                                      trainable
  2 for k = 1...K do
            for v \in \mathcal{V} do
          2 \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGPEGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); Aggregation
\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \operatorname{COMBINE}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \leftarrow \mathbf{Concatenation}
            \mathbf{h}_v^k \leftarrow \text{NORMALIZE}(\mathbf{h}_v^k), \forall v \in \mathcal{V}
  8 end
\mathbf{z}_v \leftarrow \mathbf{h}_v^K, orall v \in \mathcal{V}
```

Neighborhood Aggregation

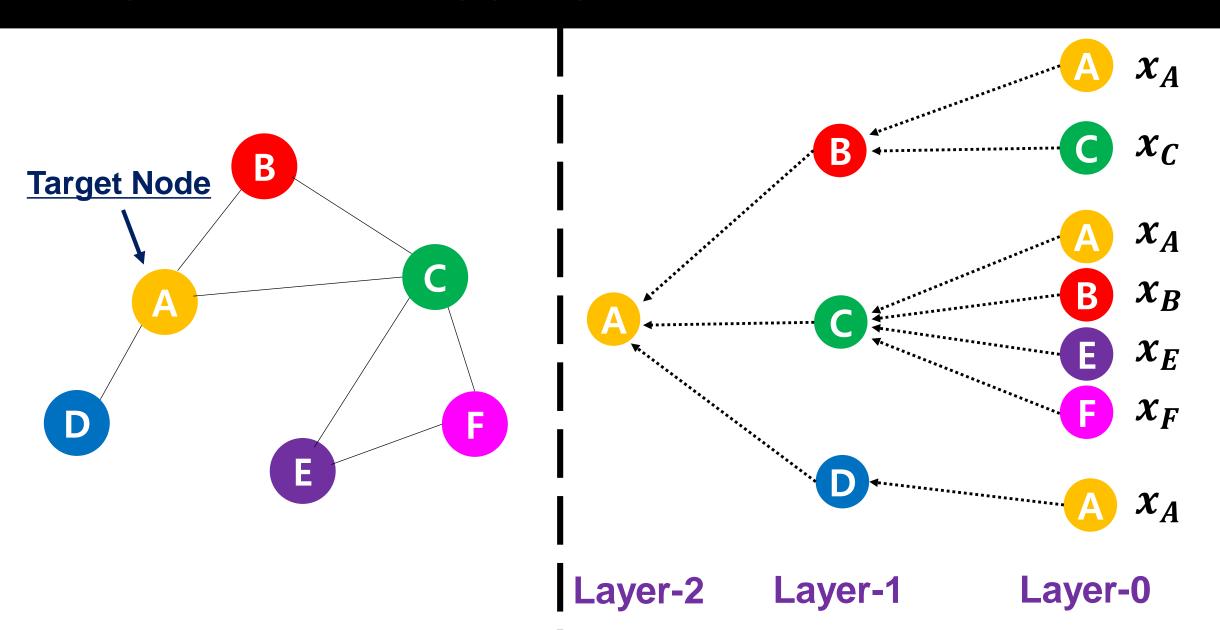
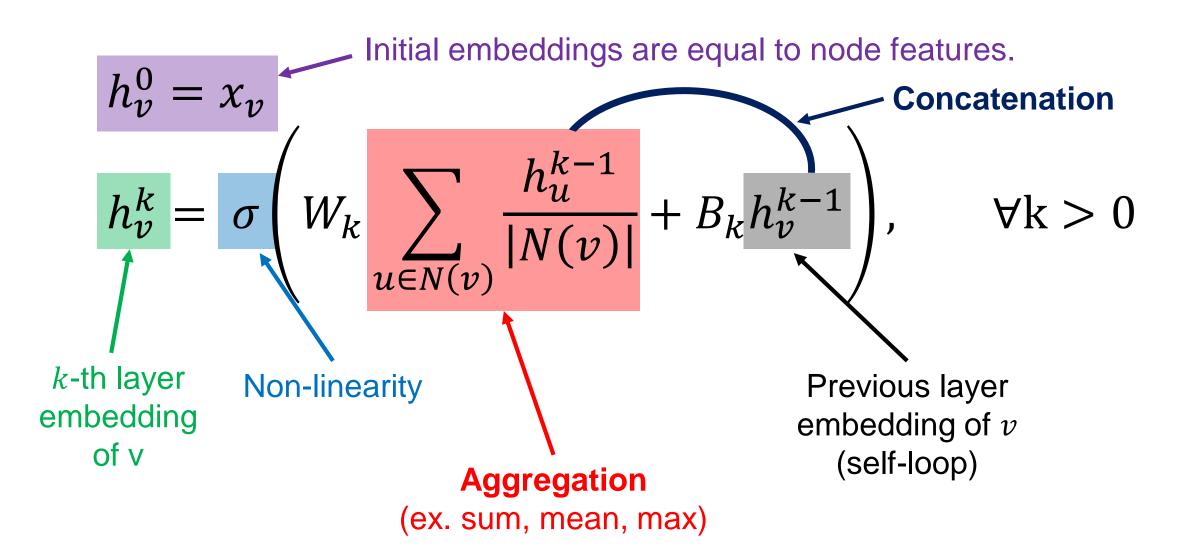


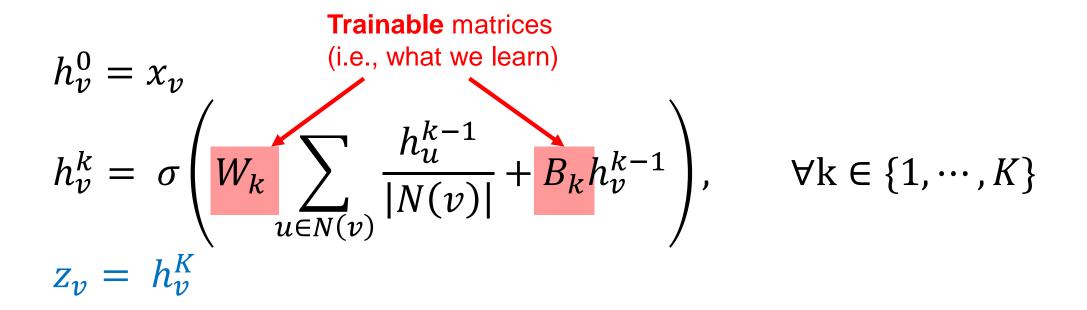
Table of Contents

- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

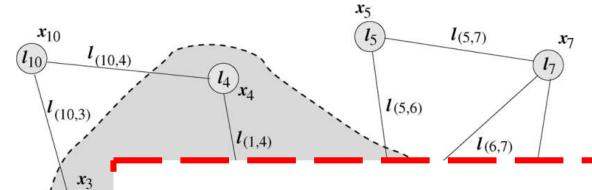
Graph Neural Network



Graph Neural Network



- After K-layers of neighborhood aggregation, we get output embeddings for each node.
- We can feed these embeddings into any loss function and run stochastic gradient descent to train the aggregation parameters.



 (l_3)

 $l_{(9,2)}$

According to **Banach fixed point theorem**,

it has a unique solution provided that ${\it F_w}$ is a contraction map with respect to the state

, i.e., there exists μ , $0 \le \mu < 1$,

such that $||F_w(x, l) - F_w(y, l)|| \le \mu ||x - y||$ holds for any x, y.

$$\mathbf{x}_n = f_{\mathbf{w}}(\mathbf{l}_1, \mathbf{l}_{(1,2)}, \mathbf{$$

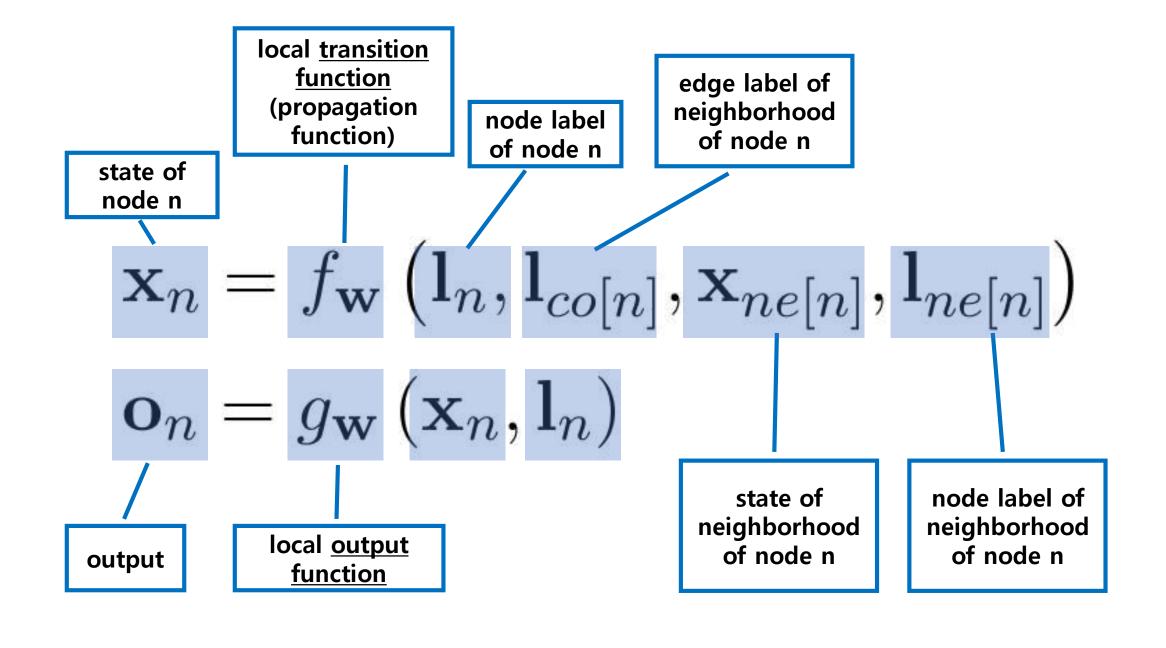
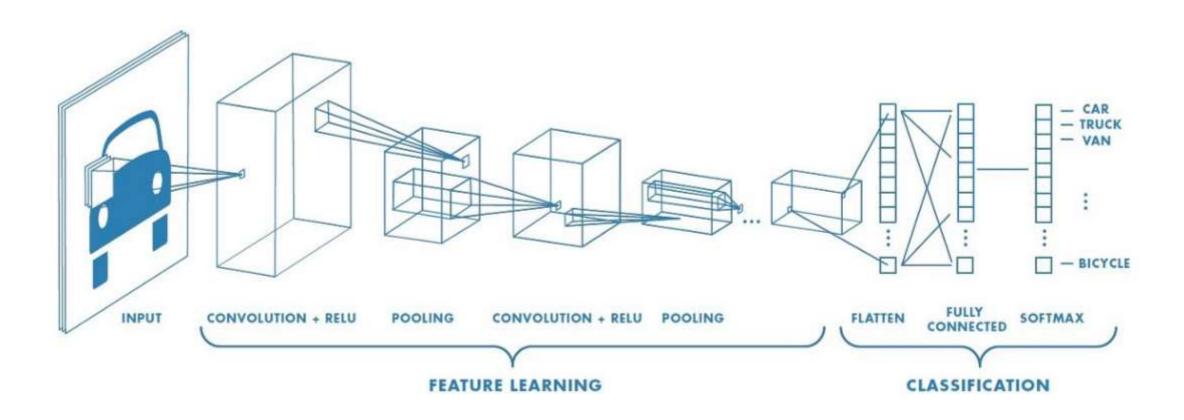


Table of Contents

- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

Graph Convolutional Network



Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Propagation Rule

$$h_i^{(l+1)} = \sigma(W^{(l)} \sum_{j=1}^{N} h_j^{(l)} + b^{(l)})$$

$$H^{(l+1)} = \sigma(W^{(l)} H^{(l)} + b^{(l)})$$

$$H^{(l+1)} = \sigma(AW^{(l)} H^{(l)} + b^{(l)})$$

Labelled graph	Adjacency matrix					
	/0	1	0	0	1	0 \
(6)	1	0	1	0	1	0
(4)-(3)	0	1	0	1	0	0
I LO	0	0	1	0	1	1
(3)-(2)	1	1	0	1	0	0
	0 /	0	0	1	0	0/

Graph Convolutional Network

$$H^{(l+1)} = \sigma(AW^{(l)}H^{(l)} + b^{(l)})$$

$$H^{(l+1)} = \sigma(\widetilde{A}W^{(l)}H^{(l)} + b^{(l)})$$

$$M^{(l+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}W^{(l)}H^{(l)} + b^{(l)})$$
normalization

$$\widetilde{A} = A + I$$
 (self-

Table of Contents

- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

GraphSAGE

Simple Neighborhood Aggregation:

$$h_v^k = \sigma \left(W_k \sum_{u \in N(v)} \frac{h_u^{k-1}}{|N(v)|} + B_k h_v^{k-1} \right)$$

GraphSAGE

$$h_v^k = \sigma([W_k \cdot AGG(\{h_u^{k-1}, \forall u \in N(v)\}), B_k h_v^{k-1}])$$

GraphSAGE

Neighborhood의 정보를 모으는 함수

Mean aggregator:

$$AGG = \sum_{u \in N(v)} \frac{h_u^{k-1}}{|N(v)|}$$

LSTM aggregator:

$$AGG = LSTM([h_u^{k-1}, \forall u \in \pi(N(v))])$$

Pooling aggregator:

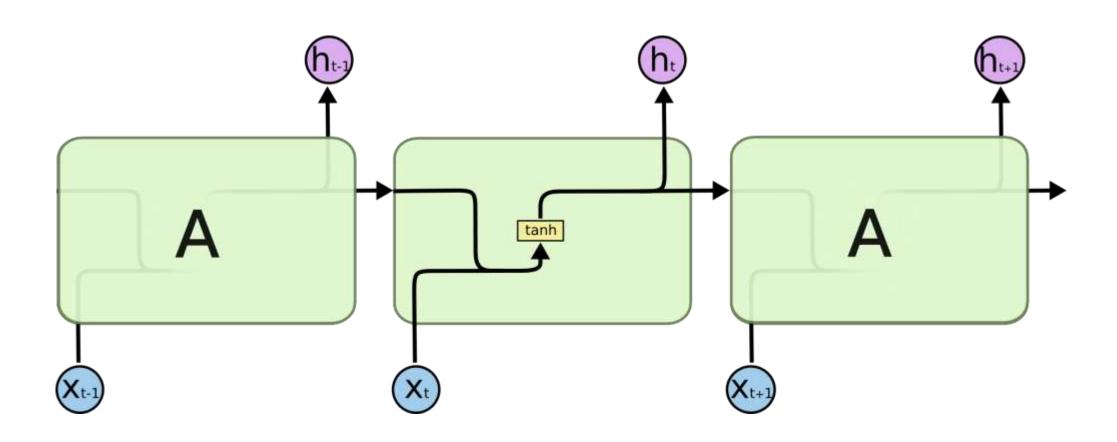
$$AGG = \gamma(\{Qh_u^{k-1}, \forall u \in N(v)\})$$

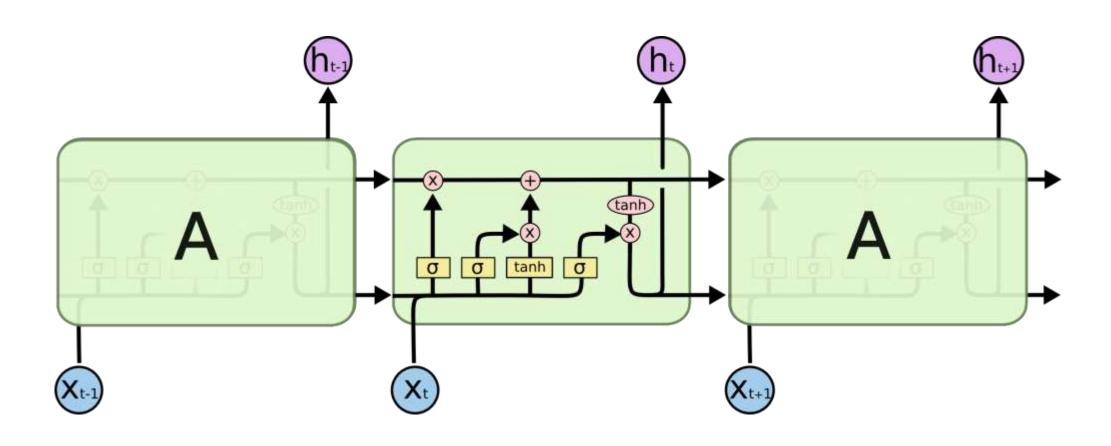
Symmetric vector function (element-wise mean/max)

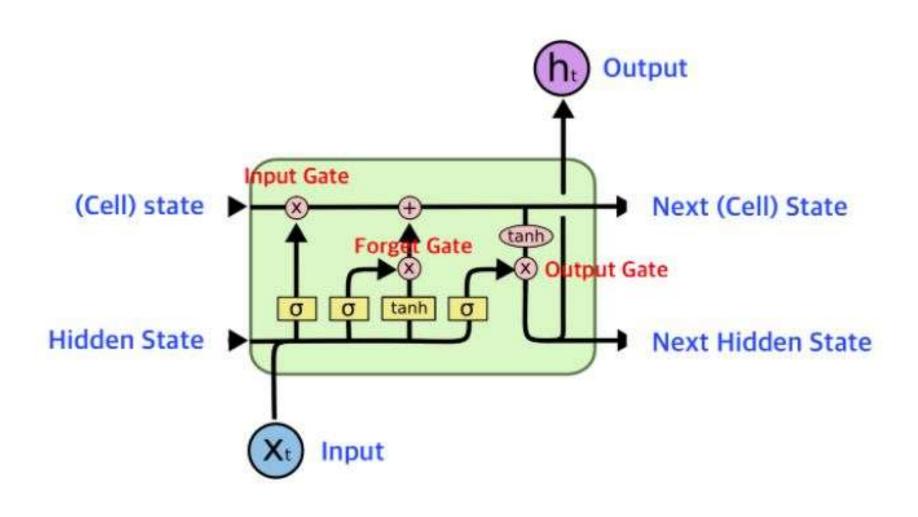
LSTM aggregator:

$$AGG = LSTM([h_u^{k-1}, \forall u \in \pi(N(v))])$$

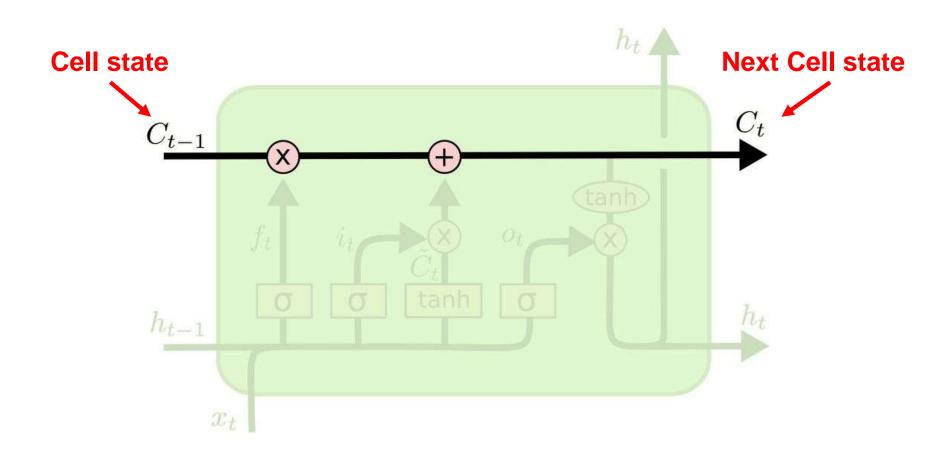
https://wikidocs.net/152773



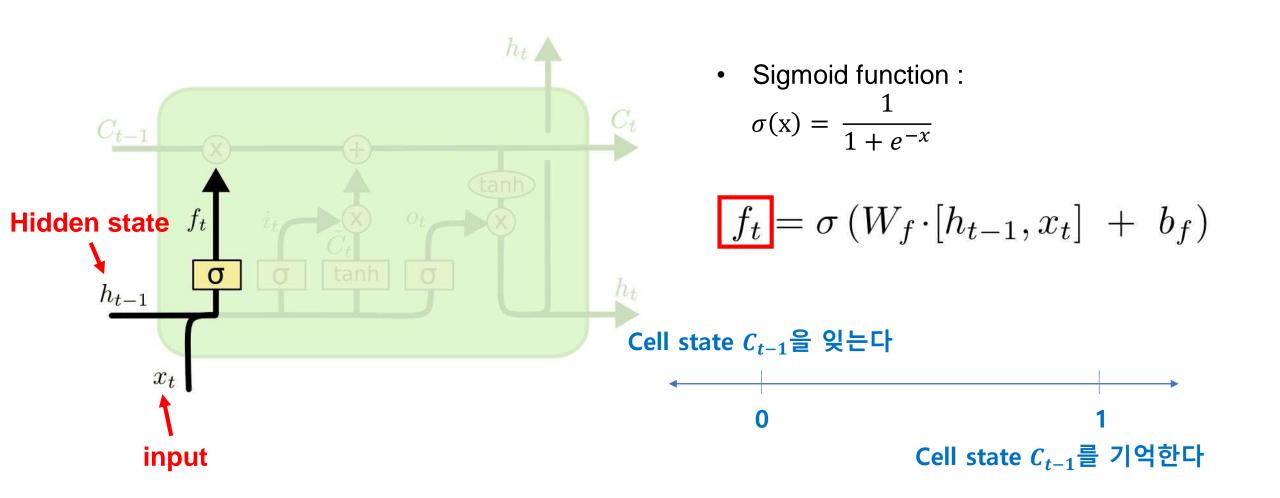




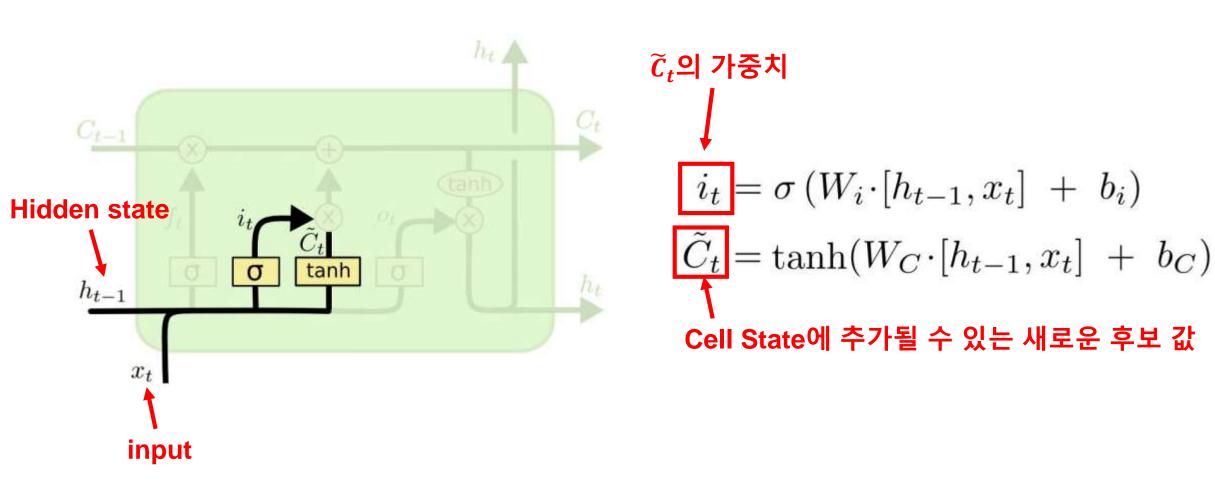
Cell State



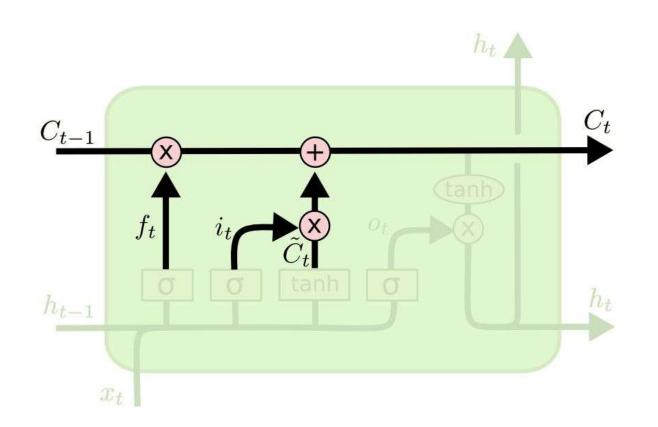
Forget Gate

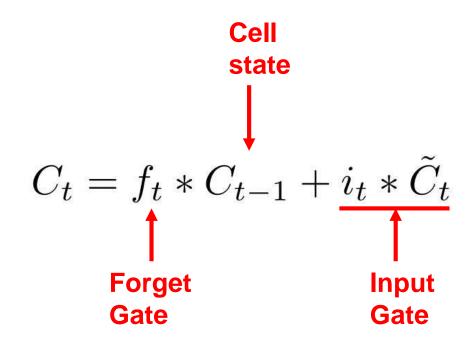


Input Gate

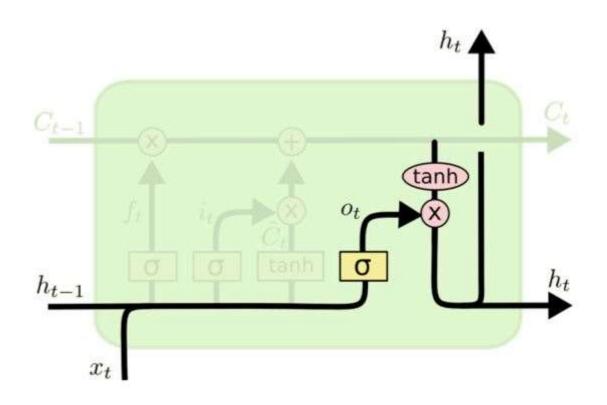


Update





Output Gate



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Pooling

Pooling aggregator:

$$AGG = \gamma(\{Qh_u^{k-1}, \forall u \in N(v)\})$$

1	1	5	6
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 filters and stride 2

6	8
3	4

Pooling

Pooling aggregator:

$$AGG = \gamma(\{Qh_u^{k-1}, \forall u \in N(v)\})$$

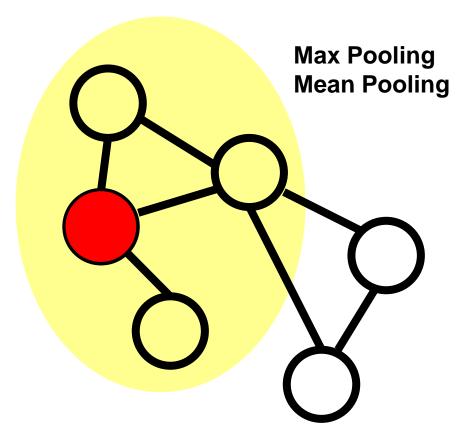
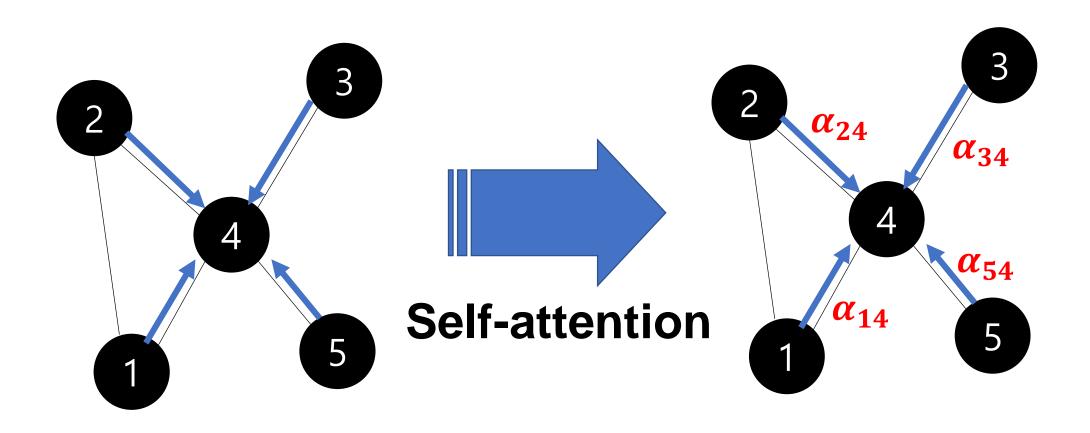


Table of Contents

- I. Convolutional Neighborhood Aggregation Method
 - I. Graph Neural Network
 - II. Graph Convolutional Network
 - III. GraphSAGE
 - IV. Graph Attention Network

Graph Attention Network



Graph Attention Network

We augment basic graph neural network model with <u>attention</u>.

$$h_{v}^{0} = x_{v}$$

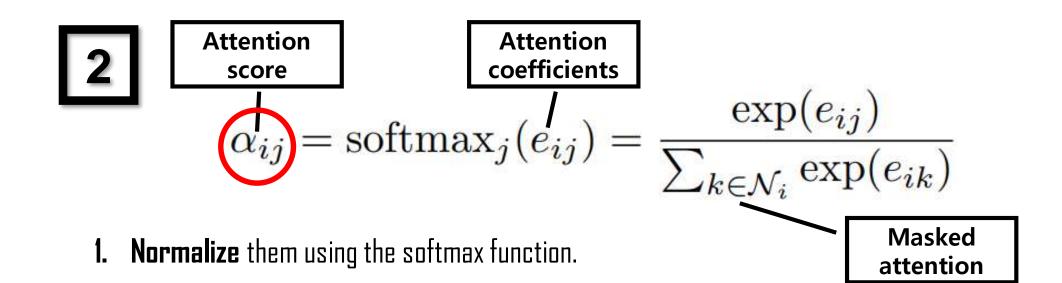
$$h_{v}^{k} = \sigma \left(\sum_{u \in N(v)} \alpha_{v,u} W_{k} \frac{h_{u}^{k-1}}{|N(v)|} + \alpha_{v,v} B_{k} h_{v}^{k-1} \right), \quad \forall k \in \{1, \dots, K\}$$

$$z_{v} = h_{v}^{K}$$
Attention Score



- 1. Apply a shared linear transformation(W) to every node.
- 2. Perform self-attention.

Attention coefficients indicate the importance of node j's features to node i.



Scaled Dot-Product Attention

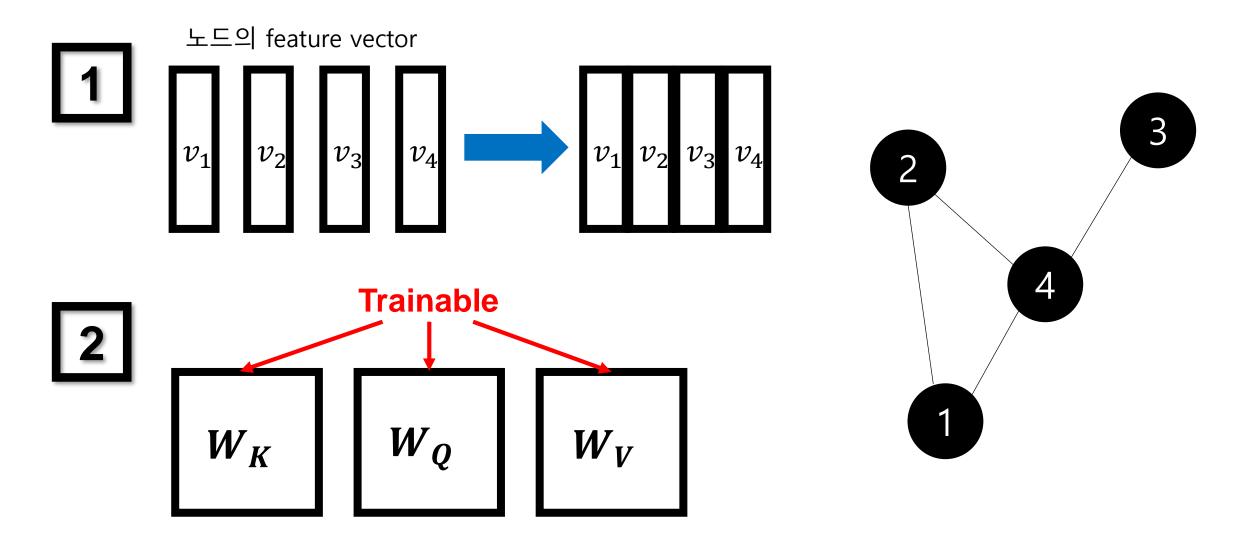
The input consists of queries, keys and values.

We compute the matrix of outputs as:

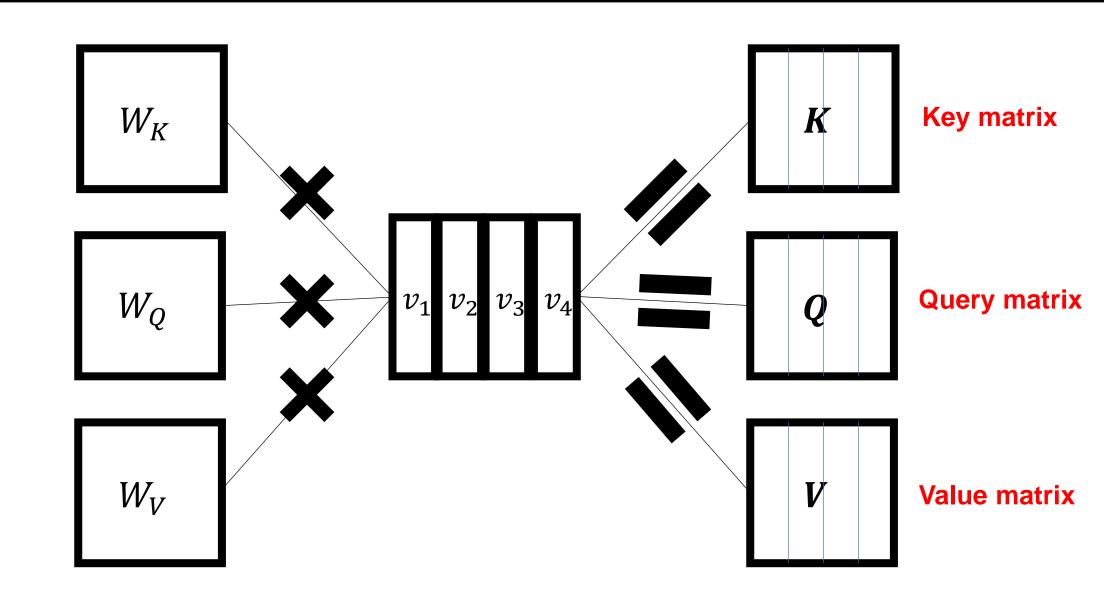
Attention Score

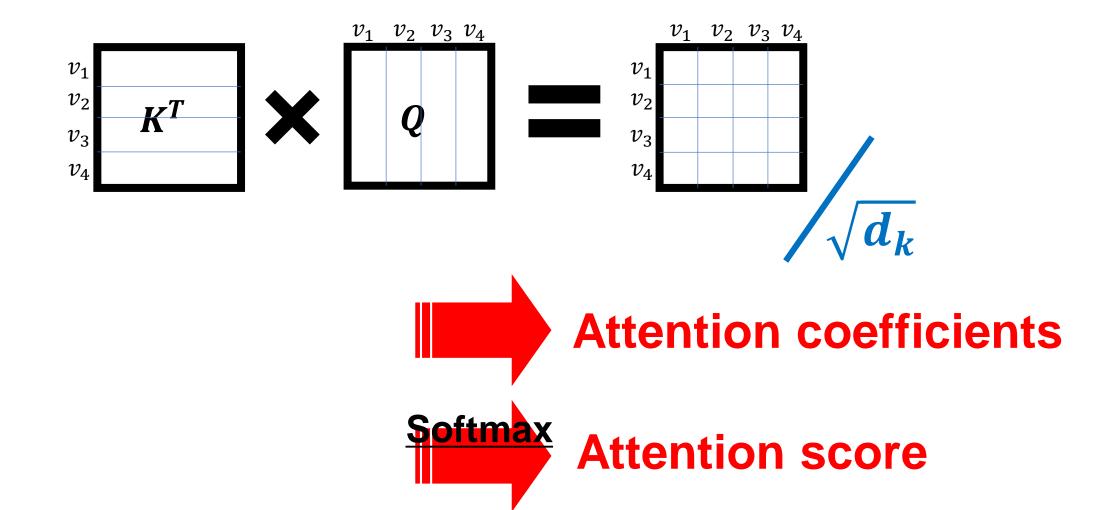
$$Att(K, Q, V) = softmax\left(\frac{1}{\sqrt{d_k}}QK^T\right)V$$

where
$$K = \begin{pmatrix} k_1^T \\ \vdots \\ k_n^T \end{pmatrix} \in \mathbb{R}^{n \times d_k}$$
, $Q = \begin{pmatrix} q_1^T \\ \vdots \\ q_m^T \end{pmatrix} \in \mathbb{R}^{m \times d_k}$ and $V = \begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix} \in \mathbb{R}^{n \times d_v}$.



3





$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

- Compute a linear combination of the features.
- 2. Apply a *nonlinear* function σ .

expand to multi-head attention

$$\mathbf{4} \vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

• | : concatenation

K independent attention mechanism

- α_{ij}^k : normalized attention coefficients computed by the **k-th** attention mechanism (a^k)
- W^k : weight matrix of k-th attentional head

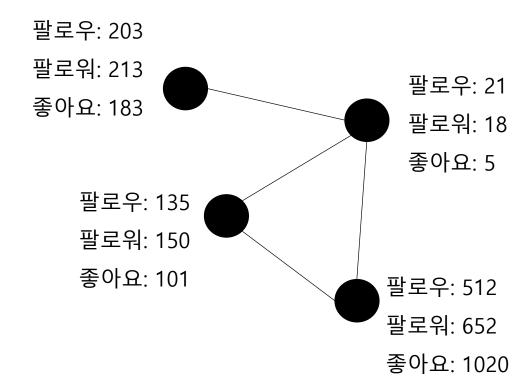
Multi-head Attention

ex) Instagram

팔로워 ← $head_1$

팔로우 \leftarrow head₂

좋아요 \leftarrow head₃



Multi-head Attention

```
MultiHead(Q, K, V) = Concat(head_1, \dots, head_h)W^O
```

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

and the projections $W_i^Q \in \mathbb{R}^{d_{model} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{model} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{model} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{model}}$.

Thank you for listening.