#### Graph Neural Network

Hyelin Choi

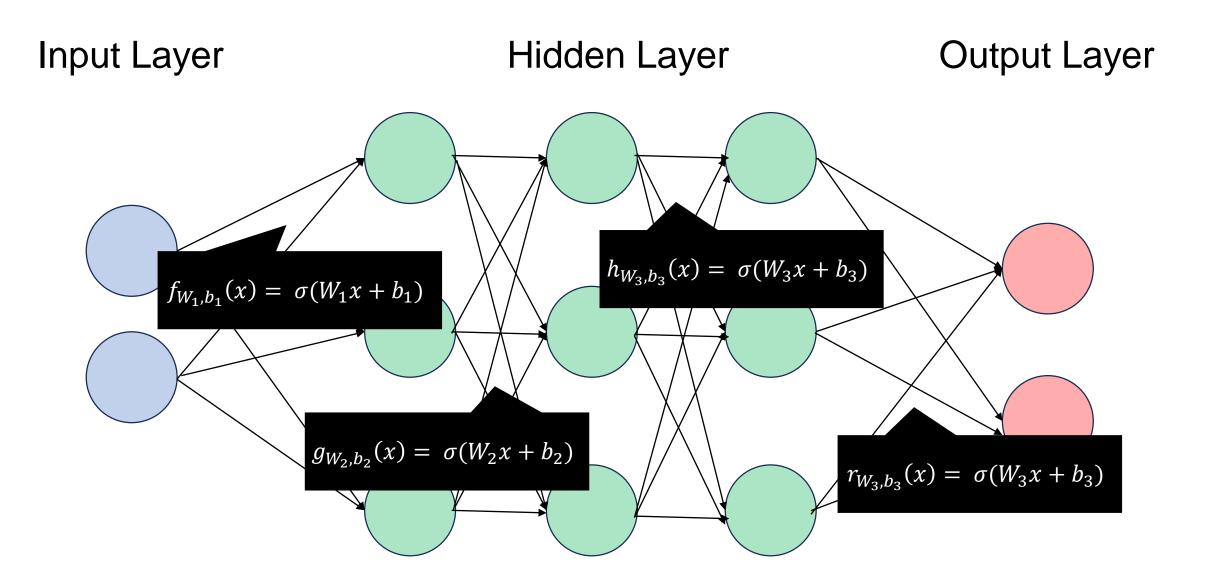
Department of Mathematics Sungkyunkwan University

February 15, 2024

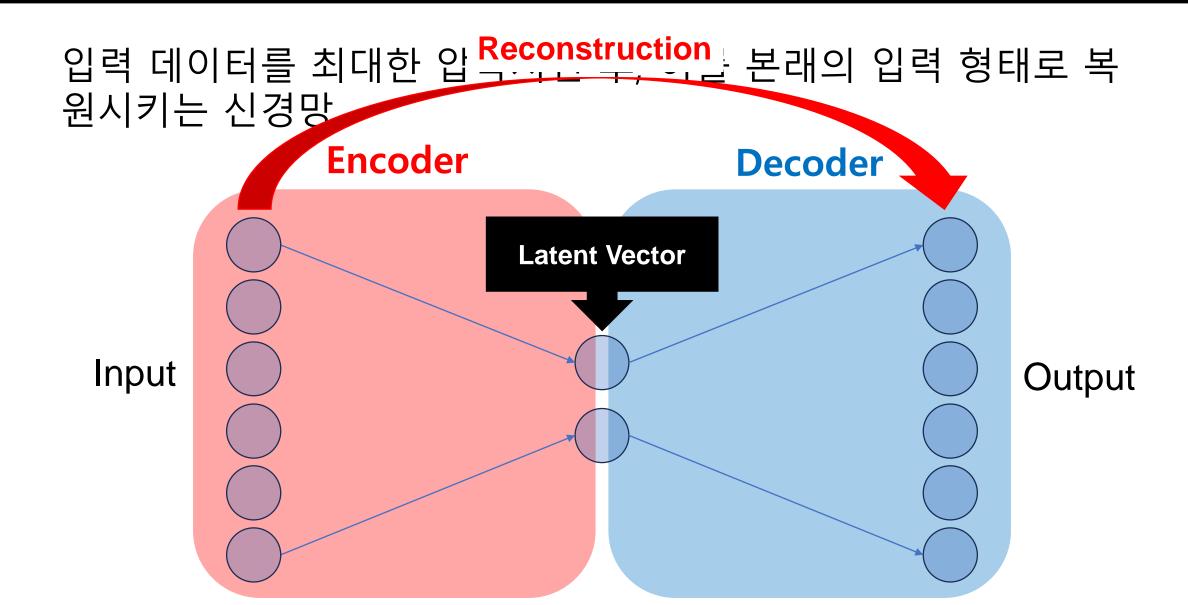
### Table of Contents

- I. Neighborhood autoencoder methods
  - I. Deep Neural Graph Representations (DNGR)
  - II. Structural Deep Network Embeddings (SDNE)

## Deep Neural Network



### Autoencoder



### Table of Contents

- I. Neighborhood autoencoder methods
  - I. Deep Neural Graph Representations (DNGR)
  - II. Structural Deep Network Embeddings (SDNE)

## Neighborhood Autoencoder Methods

The autoencoder objective for DNGR and SDNE:

$$DEC(ENC(s_i)) = DEC(z_i) \approx s_i$$

## Neighborhood Autoencoder Methods

Each node  $v_i$  is associated with a neighborhood vector,  $s_i \in \mathbb{R}^{|V|}$ , which corresponds to  $v_i$ 's row in the matrix S.

$$S_{ij} = s_G(v_i,v_j)$$
.

Random surfing 을 이용해서 정의  $S = \begin{bmatrix} S_G(v_1,v_1) & S_G(v_1,v_2) & \cdots & S_G(v_1,v_n) \\ S_G(v_2,v_1) & S_G(v_2,v_2) & \cdots & S_G(v_2,v_n) \\ \vdots & \vdots & \vdots & \vdots \\ S_G(v_i,v_1) & S_G(v_i,v_2) & \cdots & S_G(v_i,v_n) \\ \vdots & \vdots & \ddots & \vdots \\ S_G(v_n,v_1) & S_G(v_n,v_2) & \cdots & S_G(v_n,v_n) \end{bmatrix}$ 

## Deep Neural Graph Representations (DNGR)

- 1. We introduce <u>random surfing model</u> to capture graph structural information and generate a probabilistic co-occurrence matrix.
- 2. We calculate the PPMI matrix.
- 3. We use a stacked denoising autoencoder.

#### Random Surfing

그래프의 노드를 무작위로 탐색하면서 이동하는 것을 의미한다.

현재 노드에서 이웃노드로 이동이 일어날 수 있으며, 각각의 이동

은 <u>특정 확률</u>로 결정된다.

**State Transition Matrix** 

#### State Transition Matrix

The state transition probability is defined by

$$P_{ss'} = \Pr(s_{t+1} = s' | s_t = s)$$
.

We assume there is a transition matrix A that captures the transition probability between different nodes.

$$A = egin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ dots & dots & \ddots & dots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix}$$
 node 2 에서 node n 으로 이동할 확률

- 1. 그래프의 노드들을 무작위로 정렬한다.
- 2. 현재 노드를 *i*번째 노드라고 가정한다.
- 3. row vector  $p_k^i$ 를 다음과 같이 정의한다 :

$$\boldsymbol{p_k^i} = [\tilde{p}_k^{i,1} \ \tilde{p}_k^{i,2} \ \cdots \ \tilde{p}_k^{i,j} \ \cdots \ \tilde{p}_k^{i,n}]$$

Node i 에서 k번 이동했을때 Node 2에 도착할 확률

4. k번 이동한 후에 각각의 노드에 도착할 확률을 다음과 같이 정의할 수 있다:

$$p_k^i = p_{k-1}^i A = p_0^i A^k$$
.

•  $p_0^i$ : i번째 성분이 1이고 나머지는 0인 one-hot vector.

$$p_k^i = p_{k-1}^i A = p_0^i A^k$$

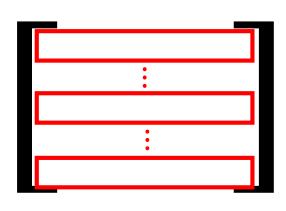
ex) 
$$p_2^i = p_1^i A$$

5. 모든 노드에 대하여  $p_k^i$  를 구하고 이를 위에서 아래로 쌓아서 PCO matrix 를 만든다.

 $v_1$  에서 k번 이동한 후, 각각의 노드에 도착할 확률: $p_k^1$ 

 $v_i$  에서 k번 이동한 후, 각각의 노드에 도착할 확률  $: oldsymbol{p}_k^i$ 

 $v_n$  에서 k번 이동한 후, 각각의 노드에 도착할 확률 :  $oldsymbol{p_k^n}$ 



PCO[i,j]

 $: v_i$ 에서 k번 이동한 후  $v_j$  에

도착할 확률

## Deep Neural Graph Representations (DNGR)

- 1. We introduce <u>random surfing model</u> to capture graph structural information and generate a probabilistic coocurrence matrix.
- 2. We calculate the PPMI matrix.
- 3. We use a stacked denoising autoencoder.

#### PMI matrix

Pointwise Mutual Information matrix (PMI matrix)

The PMI of  $x \in X$  and  $y \in Y$  quantifies the discrepancy between the probability of their co-occurrence given their joint distribution and their individual distributions, assuming independence.

We write PMI matrix as follows

$$= \log \frac{p(x,y)}{p(x)p(y)}$$

x와 y가 동시에 발생할 확률

· PMI 값이 작다 = 두 노드의 유사도가 작다

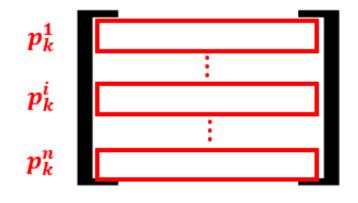
생할 확률

y가 발생할 확률

#### PMI matrix

Pointwise Mutual Information matrix (PMI matrix)
 We write PMI matrix as follows

$$PMI(v_i; v_j) = \log \frac{p(v_i, v_j)}{p(v_i)p(v_j)}.$$



PCO[i,j]

 $:v_{i}$ 에서 k번 이동한 후  $v_{j}$  에

도착할 확률

#### PPMI matrix

Positive Pointwise Mutual Information matrix (PPMI matrix)

We write PMI matrix as follows

$$PMI(x; y) = \log \frac{p(x,y)}{p(x)p(y)}.$$

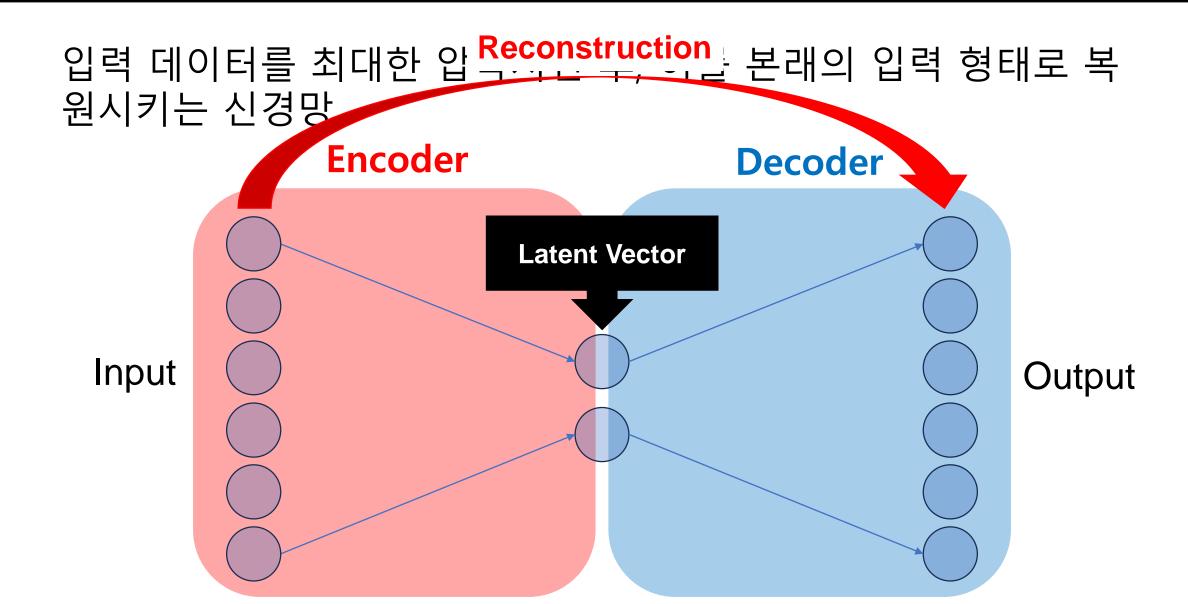
We assign each negative value to 0 to form the PPMI matrix

$$PPMI(x; y) = \max(0, PMI(x; y)).$$

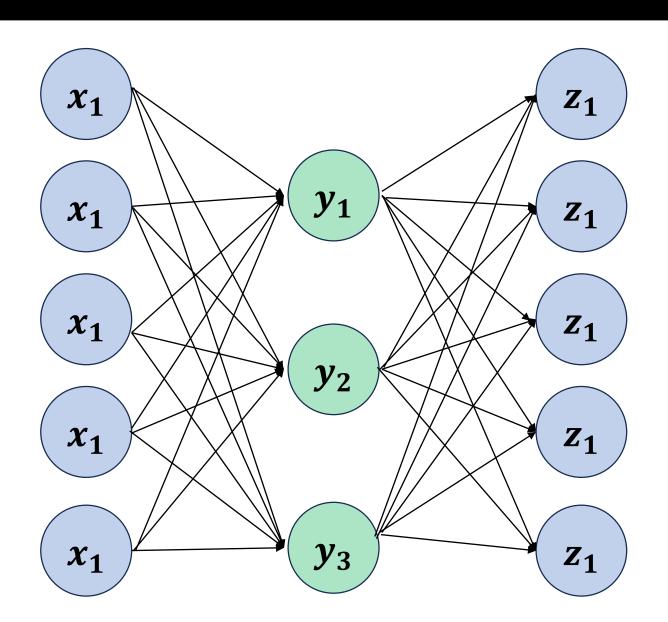
## Deep Neural Graph Representations (DNGR)

- 1. We introduce <u>random surfing model</u>.
- 2. We calculate the PPMI matrix.
- 3. We use a stacked denoising autoencoder.

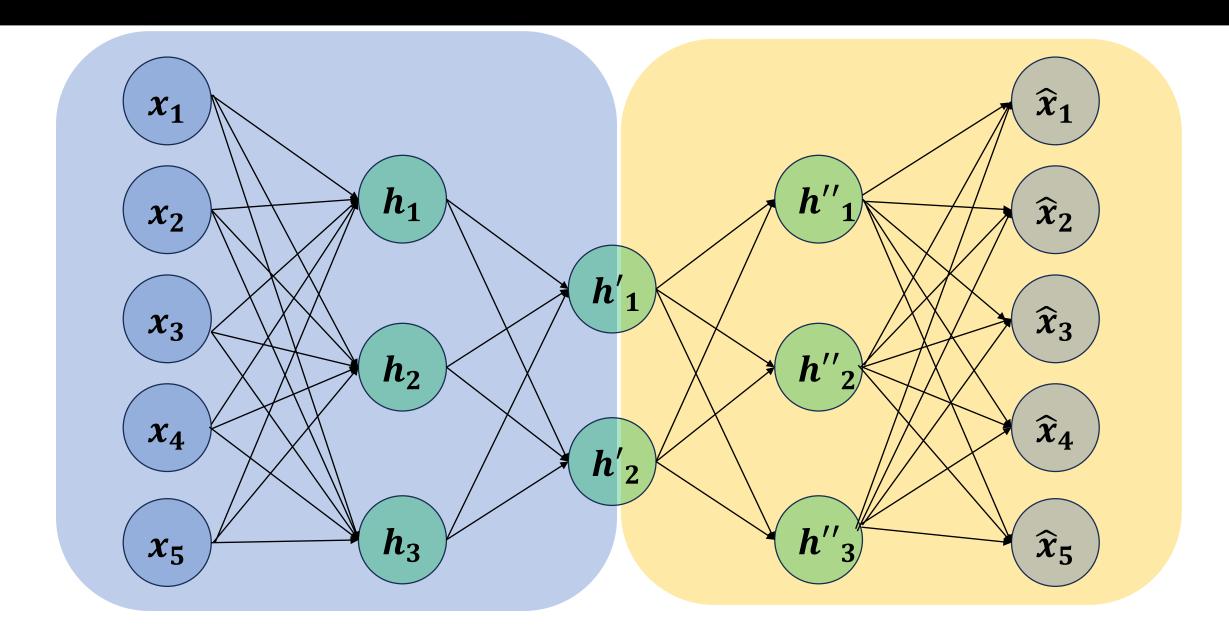
### Autoencoder



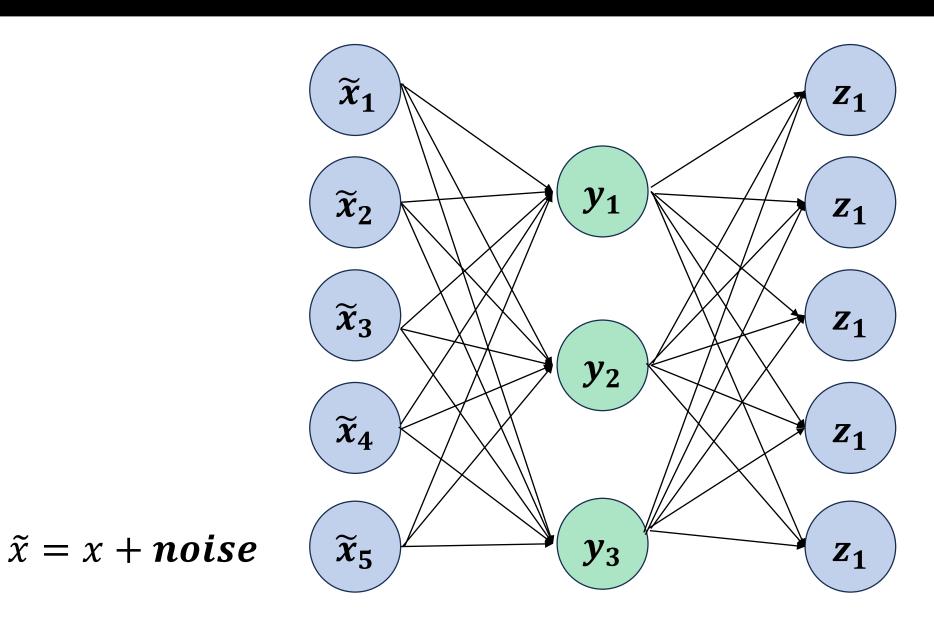
## Single Layer Autoencoder



## Stacked Autoencoder



# Denoising Autoencoder



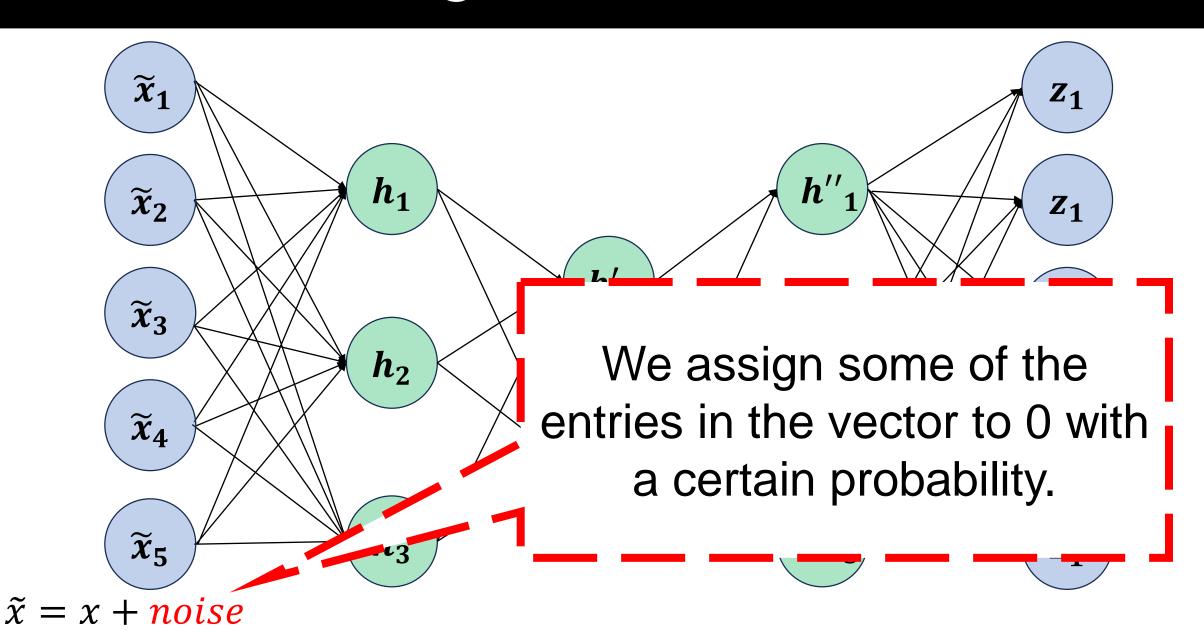
## Denoising Autoencoder

#### • Reason for $\tilde{x} = x + noise$

High dimensional input data often contains redundant information and noise.

It is believed that the denoising strategy can effectively reduce noise and enhance robustness.

# Stacked Denoising Autoencoder



## Stacked Denoising Autoencoder

We are interested in:

$$\min_{\theta_1, \dots, \theta_N} \sum_{i=1}^n L(x^{(i)}, f_{\theta_N} \circ \dots \circ f_{\theta_1}(\tilde{x}^{(i)}))$$

where  $\tilde{x}^{(i)}$  is corrupted input data of  $x^{(i)}$ , N is the number of layer and n is the number of input data.

### Table of Contents

- I. Neighborhood autoencoder methods
  - Deep Neural Graph Representations (DNGR)
  - II. Structural Deep Network Embeddings (SDNE)

## Graph

Definition 1. (Graph) A graph is denoted as G = (V, E), where  $V = \{v_1, \dots, v_n\}$  represents n nodes and  $E = \{e_{i,j}\}_{i,j=1}^n$  represents the edges. Each edge  $e_{i,j}$  is associated with a weight  $s_{i,j} \geq 0$ . For  $v_i$  and  $v_j$  not linked by an edge,  $s_{i,j} = 0$ . Otherwise, for unweighted graph  $s_{i,j} = 1$  and for weighted graph,  $s_{i,j} > 0$ 

## Graph

Each edge  $e_{i,j}$  is associated with a weight  $s_{i,j} \geq 0$ . For  $v_i$  and  $v_j$  not linked

by an edge,  $s_{i,j} = 0$ . Otherwise, for unweighted graph  $s_{i,j} = 1$  and for weighted graph,  $s_{i,j} > 0$ . Adjacency Matrix of Adjacency Matrix of **Weighted** Graph **Unweighted** Graph

## First-Order Proximity

Definition 2. (First-Order Proximity) The first-order proximity describes the pairwise proximity between nodes. For any pair of nodes, if  $s_{i,j} > 0$ , there exists positive first-order proximity between  $v_i$  and  $v_j$ . Otherwise, the first-order proximity between  $v_i$  and  $v_j$  is 0.

The first-order proximity captures the local network structure.

## Second-Order Proximity

Definition 3. (Second-Order Proximity) The second-order proximity between a pair of nodes describes the proximity of their pair's neighborhood structure. Let  $N_u = \{s_{u,1}, \cdots, s_{u,|V|}\}$  denote the first-order proximity between  $v_u$  and other nodes. Then, second-order proximity is determined by the similarity of  $N_u$  and  $N_v$ .

The second-order proximity captures the global network structure.

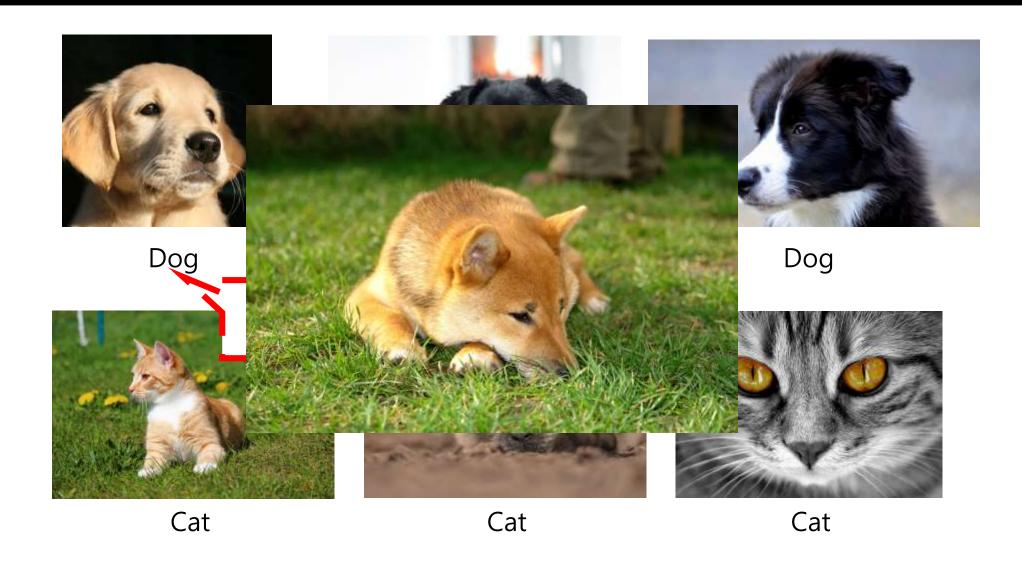
## Network Embedding

Definition 4. (Network Embedding) Given a graph denoted as G = (V, E), network embedding aims to learn a mapping function  $f: v_i \to y_i \in \mathbb{R}^d$ , where  $d \ll |V|$ . The objective of the function is to make the similarity between  $y_i$  and  $y_j$  explicitly preserve the first-order and second-order proximity of  $v_i$  and  $v_j$ .

## Structural Deep Network Embedding (SDNE)

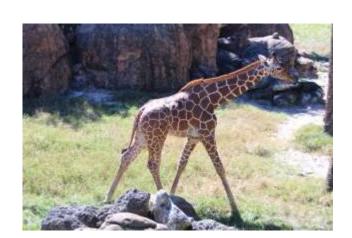
We propose a <u>semi-supervised deep model</u>, which simultaneously optimizes the <u>first-order and second-order proximity</u>.

## Supervised Learning



# Unsupervised Learning











## Semi-Supervised Learning

**Supervised Learning** 

**Second-order proximity** 

Small number of <u>labeled data</u> - Supervised Learning

Large number of <u>unlabeled data</u> ← Unsupervised Learning

**First-order proximity** 

소량의 labeled data를 통한 약간의 가이드로 성능을 끌어올릴 수 있다.

## Loss Function of Semi-Supervised Learning

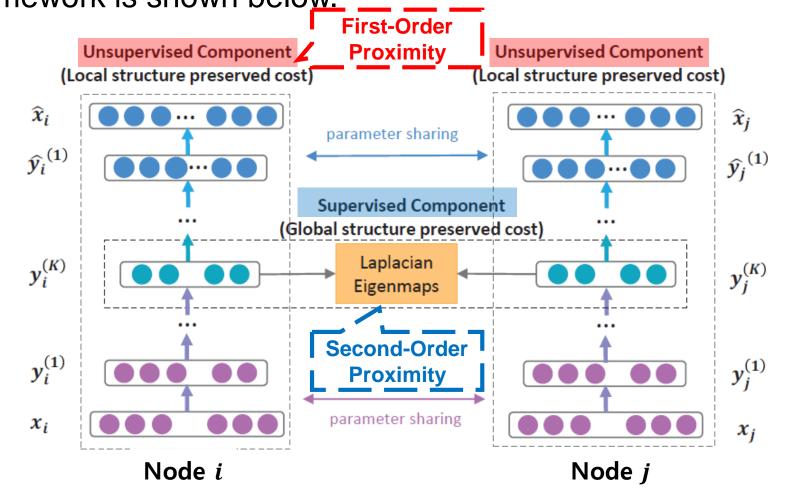
We write the loss function of semi-supervised learning as follows:

$$Loss = L_s + L_u$$

where  $L_s$  is the loss function of supervised learning and  $L_u$  is the loss function of unsupervised learning.

## Framework

We propose a semi-supervised deep model to perform network embedding, whose framework is shown below.



#### Framework

We design the supervised component to exploit the first-order proximity.

And we design the unsupervised component to exploit second-order proximity.

#### Loss Function

To preserve the <u>first-order and second-order proximity</u> simultaneously, we minimize the following loss function:

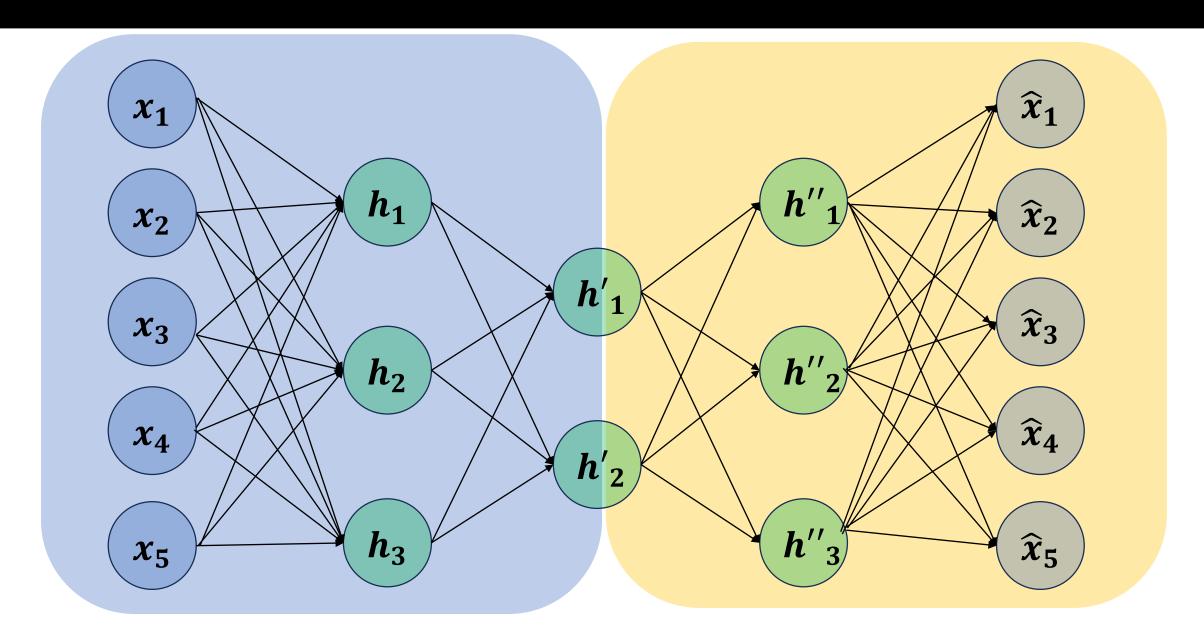
$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

$$= \|(\hat{X} - X) \odot B\|_F^2 + \alpha \sum_{i,j=1}^n s_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 + \nu \mathcal{L}_{reg}$$

where  $L_{reg}$  is an L2-norm regularizer term to prevent overfitting, which is defined as follows:

$$L_{reg} = \frac{1}{2} \sum_{k=1}^{n} (||W^{(k)}||_F^2 + ||\widehat{W}^{(k)}||_F^2)$$

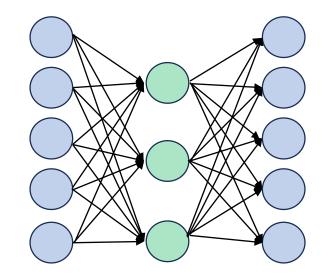
## Deep Autoencoder



## Notation

**Table 1: Terms and Notations** 

| Symbol                                                                          | Definition                               |  |  |
|---------------------------------------------------------------------------------|------------------------------------------|--|--|
| n                                                                               | number of vertexes                       |  |  |
| K                                                                               | number of layers                         |  |  |
| $S = \{\mathbf{s}_1,, \mathbf{s}_n\}$                                           | the adjacency matrix for the network     |  |  |
| $X = \{\mathbf{x}_i\}_{i=1}^n, \hat{X} = \{\hat{\mathbf{x}}_i\}_{i=1}^n$        | the input data and reconstructed data    |  |  |
| $Y^{(k)} = \{\mathbf{y}_{i}^{(k)}\}_{i=1}^{n}$ $W^{(k)}, \hat{W}^{(k)}$         | the $k$ -th layer hidden representations |  |  |
|                                                                                 | the $k$ -th layer weight matrix          |  |  |
| $\mathbf{b^{(k)}}, \mathbf{\hat{b}^{(k)}}$                                      | the $k$ -th layer biases                 |  |  |
| $\theta = \{W^{(k)}, \hat{W}^{(k)}, \mathbf{b}^{(k)}, \hat{\mathbf{b}}^{(k)}\}$ | the overall parameters                   |  |  |



## Loss Function (First-Order Proximity)

The loss function is defined as follows:

$$\mathcal{L}_{1st} = \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i}^{(K)} - \mathbf{y}_{j}^{(K)}\|_{2}^{2}$$
$$= \sum_{i,j=1}^{n} s_{i,j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2}$$

The loss function above borrows the idea of <u>Laplacian Eigenmaps</u>, which incurs a penalty when similar nodes are mapped far away in the embedding space.

# Laplacian Eigenmaps

• Graph  $\rightarrow \mathbb{R}$ 

We denote node i's embedding as  $y_i$ .

We wish to minimize

$$\sum_{i,j=1}^{n} (y_i - y_j)^2 A_{ij}$$

for  $y_i \in \mathbb{R}$  and  $1 \le i \le n$ .

# Loss Function (Second-Order Proximity)

Penalty

Reconstructed data

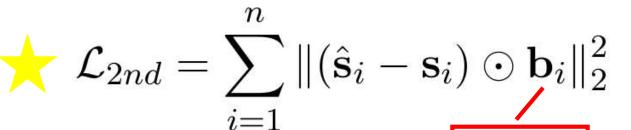
Input data

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|\hat{\mathbf{x}}_i - \hat{\mathbf{x}}_i\|_2^2$$

Neighborhood structure

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|\hat{\mathbf{s}}_i - \mathbf{s}_i\|_2^2$$

Since each  $s_i$  characterizes the neighborhood structure of the node  $v_i$ 



We impose more penalty to the reconstruction error of the non-zero elements than that of zero elements.

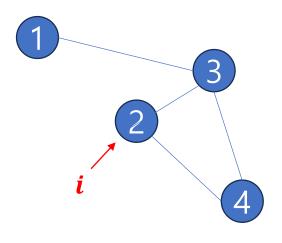
## Loss Function (Second-Order Proximity)

We impose more penalty to the reconstruction error of the non-zero elements than that of zero elements. The revised loss function is shown as follows:

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{s}}_i - \mathbf{s}_i) \odot \mathbf{b}_i\|_2^2$$

where  $\odot$  means the Hadamard product,  $b_i = \{b_{i,j}\}_{j=1}^n$ . If  $s_{i,j} = 0$ ,  $b_{i,j} = 1$ , else  $b_{i,j} = \beta > 1$ .

$$\mathcal{L}_{2nd} = \sum_{i=1}^{n} \|(\hat{\mathbf{s}}_i - \mathbf{s}_i) \odot \mathbf{b}_i\|_2^2 \qquad \text{If } s_{i,j} = 0, \, b_{i,j} = 1 \\ \text{If } s_{i,j} > 0, \, b_{i,j} > 1$$



#### Loss Function

To preserve the first-order and second-order proximity simultaneously, we minimize the following loss function:

$$\mathcal{L}_{mix} = \mathcal{L}_{2nd} + \alpha \mathcal{L}_{1st} + \nu \mathcal{L}_{reg}$$

$$= \|(\hat{X} - X) \odot B\|_F^2 + \alpha \sum_{i,j=1}^n s_{i,j} \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 + \nu \mathcal{L}_{reg}$$

where  $L_{reg}$  is an L2-norm regularization term to prevent overfitting, which is defined as follows:

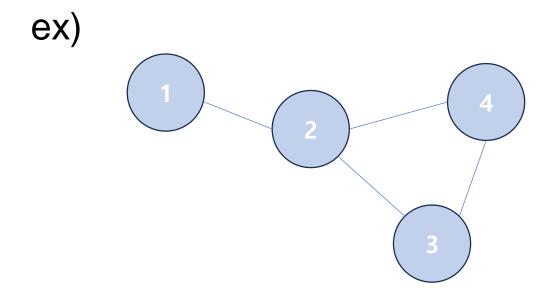
$$L_{reg} = \frac{1}{2} \sum_{k=1}^{n} (||W^{(k)}||_F^2 + ||\widehat{W}^{(k)}||_F^2)$$

Thank you for listening.

• 이전 연구 -> PPMI matrix & SVD 이용해서 matrix factorizaiton

## Co-occurrence Matrix

#### Co-occurrence matrix



Window size: 1

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

## Stacked Autoencoder

심층 신경망(deep neural network)의 한 유형인데, 입력 데이터를 저차원의 표현으로 압축한 다음 다시 원래의 차원으로 재구성하는 방법을 사용합니다. 이 과정은 입력 데이터에 대한 잠재적인 특징 을 추출하는 데 도움이 됩니다.

## PMI matrix

- PMI 값이 크다 = 두 노드의 유사도가 크다
- PMI 값이 작다 = 두 노드의 유사도가 작다

p(x,y) 값이 크다 = x와 y가 자주 동시에 발생한다 = 두 노드의 유사도가 크다 = p(x,y) 크다

matrix (PMI matrix)

antifies the discrepancy between rence given their joint distribution s, assuming independence.

 $pmi(x; y) = log \frac{p(x, y)}{p(x)p(y)}$ 

X가 발생할 확률

Y가 발생할 확률

X와 y가 동시에 발생할 확률

## PMI matrix

Pointwise Mutual Information matrix (PMI matrix)

We write PMI matrix as follows

$$PMI(x; y) = \log \frac{p(x,y)}{p(x)p(y)}.$$

We use <u>co-occurrence matrix</u> to rewrite <u>PMI matrix</u>

$$PMI(x; y) = \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{\frac{C(x,y)}{N}}{\frac{C(x)C(y)}{N}}$$

where C(x, y) is the number of co-occurrence of node x and node y, C(x) is the occurrence of node x and y is the number of nodes.

#### PPMI matrix

Positive Pointwise Mutual Information matrix (PPMI matrix)
 We write PMI matrix as follows

$$PMI(x; y) = \log \frac{p(x,y)}{p(x)p(y)}.$$

We assign each negative value to 0 to form the <u>PPMI matrix</u>  $PPMI(x; y) = \max(0, PMI(x; y)).$ 

# Singular Value Decomposition (SVD)

We perform dimension reduction using <u>SVD</u>.

We assume that the PPMI matrix X can be decomposed into three matrices  $X = U\Sigma V^T$  where U and V are orthonormal matrices and  $\Sigma$  is a diagonal matrix.

In other words,

$$X \approx X_d = U_d \Sigma_d V_d^T$$

Here  $U_d$  and  $V_d$  are the left d columns of U and V corresponding to the top-d singular values (in  $\Sigma_d$ ). Then the word representation matrix R can be:

$$R = U_d(\Sigma_d)^{1/2}$$
 or  $R = U_d$ .

The PPMI matrix X is the product of the word representation matrix and the context matrix. The SVD procedure provides us a way of finding the matrix R from the matrix X.